

直流マイクログリッド制御手法の開発

Development of DC Microgrid Control Method

力宗真寛^{*1} Masahiro Rikiso 可知純夫^{*1} Sumio Kachi □ 井宣彦^{*1} Nobuhiko Sakai □ 印部飛鳥^{*1} Asuka Abe □ 部飛鳥^{*1} Asuka Abe Noritaka Murofushi Tadataka Wakabishi

〈概要〉

SDGsに寄与する脱炭素化などの将来のエネルギーインフラを見据えて,再生可能エネルギー(再 エネ)や蓄電池,電動車(EV)の普及拡大に貢献できる手段である,直流マイクログリッドが注目さ れている。直流マイクログリッドを社会実装させるためには,経済的かつ安定的な電力制御技術を確 立することが重要である。本稿では、1次制御にDroop制御や仮想慣性制御を導入したことを特長と する階層分散制御について紹介する。

1. はじめに

2050年にカーボンニュートラル社会(脱炭素社会)を実現す る過程では、再生可能エネルギー(再エネ)の主力電源化や電 気自動車(EV)の普及拡大が確実に進行していくものと期待さ れる。再エネ・蓄電池・EVなどはすべて直流(DC)機器である ため、既存の交流(AC)電力網の中に、直流の特長が活かせる 領域が必ず出現してくると考えられる。

発電力が不安定な再エネや新しい電力負荷であるEVの普及 拡大は既存電力網の不安定性を誘発する可能性があるため,将 来の電力エネルギーインフラを実現する手段として直流マイク ログリッド (DC-MG)が注目されている。

マイクログリッドとは、小規模かつ多様な分散型電源を組み

合わせて,特定地域のエネルギー需給を司るシステムであり, 自立運転時に電力系統と同程度の電力品質の維持や,太陽光発 電(PV)や風力発電などの再エネの導入拡大を支える技術であ る³⁾。

DC技術を適用した電力システムでは、直流電力を直流のま ま使用できるためエネルギーロスを抑制できることに加え、周 波数・位相制御を必要としない簡易な電圧制御で電力融通する ことができる。

DC-MG(図1)はこのDC技術とマイクログリッドが融合した ものであり, DC-MG を社会実装させるためには, 経済的かつ 安定的な電力制御技術を確立することが重要である。本稿では, 1次制御にDroop制御や仮想慣性制御の技術を導入したことを 特長とする階層分散制御について紹介する。

*1 研究開発本部 インキュベーター統括部 次世代インフラ創生センター

*2 研究開発本部 企画部

2. 当社制御手法の特長

2.1 階層分散制御

図2には、系統電源、PV、蓄電池及びEV充放電器の電力 機器がDCラインに接続されたDC-MGにおいて、1次制御 (Primary Control)と2次制御(Secondary Control)で構成され た階層分散制御を示す。1次制御は各機器内の電力変換器に搭 載される分散制御であり、2次制御はエネルギーマネジメント システム (EMS)に搭載される集中制御である。

1次制御では、各電力機器がEMSの指令に基づき、DCライ ンの電圧安定化と電力融通の分担を分散的に制御する役割を担 う。DCラインに接続されたEV急速充放電器が動作すると急 激な負荷変動が発生するため、従来の集中制御方式では電圧制 御が追従できずに、DC-MGは不安定動作となる。一方、分散 制御方式では、複数の電力機器が分散的に電圧制御を行うため、 急激な負荷変動にも追従することができる。

2次制御では, EMSは評価指標(運用コスト最小化など)に基 づいて最適化計算(目標関数の導出)を行い, 蓄電池など各電力 機器に通信指令(目標関数)を送る役割を担う。評価指標を反映 させた目標関数によって, 効率的なDC-MG動作を実現する。

1次制御と2次制御を組み合わせた階層分散制御は,各制御 の特徴である制御安定性と制御効率性を両立させることができ るため,急激な需給変動対策・リソースの有効活用などに適用 できる。

2.2 Droop制御

本稿の階層分散制御は,Droop制御を土台として構築してい る。Droop制御は,制御の実装詳細によってDroop電圧制御と Droop電流制御に大別される。

Droop電圧制御は、目標電圧 Voutを観測電流 Iobsv に応じて一次関数的に変化させる電圧制御である。その比例係数を-Rとすると、目標関数は次の数式で決定される

$$V_{out} = V_o - R * I_{obsv} \tag{1}$$

これは図3で示すように、電力変換器が電圧源 V_o+直列抵抗 Rに見えるように制御することと等価である。Droop電圧制御 では、V_oとRを調整することで、DCラインに要求される電力 量に応じて各機器の電力融通の負荷分担を実施しつつ、DCラ インの電圧を安定化できる。なお*R*=0とすれば、電圧一定 (CV: Constant Voltage) 制御となるため、Droop 電圧制御はいわゆ る CV 制御の拡張になっている。

AS Droop 电圧 前御 Droop Voltage Control.

同様に、Droop電流制御は、目標電流*I*outを観測電圧 *Vobsv* に応じて一次関数的に変化させる電流制御である。その比例係数を-1/*R*とすると、目標関数は次の数式で決定される

$$I_{out} = I_o - \frac{1}{R} * V_{obsv} \tag{2}$$

これは図4で示すように、電力変換器が電流源 I_o +並列抵抗 Rに見えるように制御することと等価である。Droop電流制御 でも、 I_o とRを調整することで、DCラインに要求される電力 量に応じて各機器の電力融通の負荷分担を実施しつつ、DCバ スの電圧を安定化できる。なお $R=\infty$ とすれば、電流一定 (CC: Constant Current) 制御となるため、Droop電流制御はいわゆ る CC 制御の拡張になっている。

3. 階層分散制御の開発

3.1 アルゴリズム設計

3.1.1 1次制御(分散制御)

1次制御として前述のDroop制御を発展させた目標関数追従 制御を考案した。目標関数は、図5のような電圧Vと電力Pか らなる2次元空間上での折線の組合せとして定義される。各電 力変換器には、その機器特性に応じた目標関数が設定される。 目標関数は静的に定義されるものもあれば、電力変換器がロー カルに観測する機器情報(例えば蓄電池のSoC(充電状態))に よって更新されるように動的に定義されるものもある。

Target Function.

各電力変換器は、動作点(Pobsv, Vobsv)が目標関数に追従す るようにフィードバック制御を実施する。その具体的方法とし て図6のDroop電力制御(DroopP制御)とDroop電圧制御 (DroopV制御)を,動作状況に応じて適用する。これにより, 観測誤差や制御誤差に対する誤差ロバスト性や,電力擾乱に対 する制御安定性を向上できる。

図6 目標関数追従制御: DroopP制御とDroopV制御 Convergence control to the target function (DroopP & DroopV).

3.1.2 2次制御(集中制御)

2次制御としては、EMSが各機器の電力状態や電力需給予測 などを考慮しながら、評価指標(例えば、適用コスト最小化など) に基づき数理最適化計算を実施することで、各電力変換器に設 定すべき目標関数を算出するアルゴリズムを設計した。数理最 適化計算では、次式のような制約つき線形計画問題を解く。 EMSは、数理最適化計算を、定期処理タイマーと警報などの イベントをトリガーにして実行する。一連のEMSの動作フロー を図7に示す。

Minimize OPEX =
$$\sum_{\text{time=0}}^{n}$$
 電力従量料金 $\left[\frac{Y}{\text{kWh}}\right]$ *買電電力量 [kWh] + 電力基本料金 $\left[\frac{Y}{\text{kW}}\right]$ *契約電力 [kW] (3)

subject to 流入電力 [kW]= 流出電力 [kW] for each bus_line for each time…< 同時同量制約 > 下限 SoC[%]≤SoC≤上限 SoC[kW] for each battery_node for each time…<SoC 制約 > 出力下限 [kW]≤出力 [kW]≤出力上限 for each node for each time…<出力制約 > 基準 SoC[%]≤最終 SoC[%] for each battery_node…< 最終 SoC 制約 > 出力 [kW]≤契約電力 [kW] for utility_node for each time…<契約電力制約 > 出力 [kW]<= 出力予測値 [kW] for each suppressionable_node for each time…< 電力需給予測値制約 > 出力 [kW]= 出力予測値 [kW] for each unsuppressionable_node for each time…< 電力需給予測値制約 > 出力 [kW]= 出力計画値 [kW] for each scheduled_node for each time…< 計画運転制約 >

図7 EMSによる2次制御のフロー図 Flow diagram of secondary control by EMS. EMSは、各電力変換器が、この数理最適化計算で得られた 制御目標値への追従を目指しながらも、擾乱発生などに対して 制御安定性を維持できるようにロバストな通常時目標関数を定 義する。更に、フェールセーフ用目標関数として、電力変換器 がEMSへの通信途絶を検知した場合に遷移する通信途絶時目 標関数と、電力変換器が停電検出時に遷移する停電時目標関数 も同時に定義し、電力変換器に配信する。図8~図10にこれ らの目標関数の例を示す。

3.2 シミュレーション検証

3.1 で設計したアルゴリズムの有効性を検証するため、1次制 御、2次制御をそれぞれMATLAB/Simulinkシミュレータ、 Pythonシミュレータとして開発した。

MATLAB/Simulinkシミュレータには、図11に示すように、 各電力変換器が自律分散的に目標関数に追従するような制御ブ ロックを実装した。Pythonシミュレータでは、数理最適化モ ジュールを、Google OR-Toolsを最適化ソルバとして開発した。 また、目標関数設計・評価モジュールとして、階層制御の効率 性を評価するツールを開発した。図12にその出力例を示す。 どの時間断面においても電力収支は成立しており、階層分散制 御のアルゴリズムの有効性がシミュレーション環境で確認でき た。

3.3 実機検証

階層分散制御の1次制御に対応した300 W級の絶縁双方向 DC/DCコンバータとして図13のDAB (Dual Active Bridge) コンバータを試作し、実際のグリッド運用を想定したシステム を構築して動作検証を行った。図14にDCグリッド模擬構成 を示す。

図15に目標関数に対する制御追従性の検証結果を示す。 EMSから設定された目標関数に対してよく追従できているこ とがわかる。これにより, 階層分散制御のアルゴリズムの有効 性を実機環境でも確認できた。

図11 Droop 制御ブロックの実装例 (MATLAB/Simulink) Implementation example of Droop control block (MATLAB/Simulink).

図12 目標関数設計・評価モジュールの出力例 (Python) Example Output of simulator of target function (Python).

図13

DABコンバータ

EV模擬負荷

DAB Converter.

PV模擬電源

図14 DCグリッド模擬構成 DC grid configuration.

Example Output of experiment.

4. 階層分散制御の拡張: DC 仮想慣性制御

4.1 アルゴリズム設計

3章で説明した階層分散制御の制御安定性をいっそう向上さ せるために、1次制御であるDroop制御を拡張したDC仮想慣性 制御を考案した。Droop制御はCV制御やCC制御に対し、仮想 抵抗を導入することで実現したが、DC仮想慣性制御は仮想抵 抗に加えて、仮想キャパシタを導入することで実現できる^{4)~9)}。 仮想キャパシタは慣性力を生み出し、急激な電圧変動などが起 こった際に変動を抑制する働きをする。この効果により、 DC-MGの電圧安定性を向上させることができる。DC仮想慣性 制御についても、Droop制御と同様に、制御の実装詳細によっ てDC仮想慣性電圧制御とDC仮想慣性電流制御に大別される。

図16にDC仮想慣性電圧制御の式及びDC仮想慣性電圧制御の等価回路を示す。

図17にDC仮想慣性電流制御の式及びDC仮想慣性電流制御の等価回路を示す。

図17 DC仮想慣性電流制御 DC virtual inertia current control. これらのDC 仮想慣性制御をシミュレータや実機環境で動作 検証を行うため、連続空間での伝達関数表現に対して、双一次 変換を施すことで、デジタル制御化した。例えば、仮想慣性電 流制御式に対して以下の双一次変換の式を代入して整理するこ とで、

$$z = e^{sT_s} \approx \frac{1}{1 + sT_s} \tag{6}$$

次のようなデジタル制御式が得られる。

$$I_{out}[n] = I_o[n] - \left(\frac{1}{R} + \frac{C}{T_s}\right) V_{obsv}[n] + \frac{C}{T_s} V_{obsv}[n-1]$$
(7)

4.2 シミュレーション検証

3.2節で開発したPythonシミュレータに上記のデジタル制御

式を実装することでDC仮想慣性制御を導入した。電力擾乱に 対するライン電圧安定性の評価結果を図18に示す。Droop制 御では電力擾乱発生時に,390 Vから365 V付近まで電圧が低 下するのに対し,DC仮想慣性制御では370 Vを下回らない。 また変動収束までの時間も仮想慣性制御のほうが短くなること が分かった。

4.3 実機検証

3.3節で開発したDABコンバータのファームウェアを改良 し、DC仮想慣性制御に対応するデジタル制御式を実装し、動 作検証を実施した。図19に、ステップ状の電力擾乱を与えた 時の電圧変動の様子を示す。図19で、特に電圧変動が大きい 20秒付近の数値を比較した結果を、表1に示す。

図19,表1からDC仮想慣性制御により,過渡時の電圧変動 が大きく抑制される効果が確認できた。

図18 Droop制御(左)とDC仮想慣性制御(右)の, 電力擾乱時電圧変動(シミュレーション結果) Voltage fluctuation during power disturbance (simulation result) of Droop control (left) and DC virtual inertia control (right).

図19 ステップ状の電力擾乱を与えた時の電圧変動 (実機評価) Voltage fluctuation when stepped power disturbance is applied (actual machine evaluation).

表1 実験結果 Experimental result.

	オーバーシュート量	オーバーシュート比
Droop制御	71.6 - 55.5 = 16.1 V	16.1 / 55.5 = <u>0.29</u>
DC仮想慣性制御	59.0 - 55.5 = 3.5 V	3.5 / 55.5 = <u>0.063</u>

5. おわりに

本稿では、直流マイクログリッド制御手法の開発の一環として、1次制御の分散制御にDroop制御ならびに仮想慣性制御を 導入するとともに、2次制御の集中制御と組み合わせた階層分 散制御のアルゴリズム設計、シミュレーション検証、ならびに 実機検証の結果を紹介した。

これらの開発は、カーボンニュートラル社会実現並びに将来 のまちづくりに貢献できる直流マイクログリッドの社会実装へ 繋がる取り組みであると期待している。引き続き、信頼性の高 いシステムを構築するとともに、運用環境を想定したシステム 実証を実施し、社会課題の解決に挑戦していく。

参考文献

- 可知純夫他: "パッケージ型蓄電システムの開発" 古河電工時報 131 (2013), 2-15.
- 中村秀人他: "蓄電池状態監視装置 (BMU)の開発" 古河電工時 報 131 (2013), 16-20.
- 3) 田邊隆之[(株)明電舎],「用語解説 第3回テーマ:マイクログ リッド」,一般法人電気学会 電力・エネルギー,2020/8/19.
- Google Developers, "https://developers.google.com/ optimization".
- Jin, Z., et al.,: "Admittance-type RC-mode Droop Control to Introduce Virtual Inertia in DC Microgrids", Proceedings of 2017 IEEE Energy Conversion Congress and Exposition (ECCE), (2017), 4107-4112.
- 6) Runfan Zhang., et al.,: "Distributed Control with Virtual Capacitance for the Voltage Restorations, State of Charge Balancing and Load Allocations of Heterogeneous Energy Storages in a DC Datacenter Microgrid", IEEE Transactionson Power Electronics, (2018), 1296-1308.
- Satabdy Jena, et al.,: "A hybrid RC-droop control strategy for power sharing and voltage restoration in islanded DC microgrids", IEEE, (2019), 1-6.
- Wu, W., et al.,: "A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines", IEEE Transactions on Industrial Electronics, (2017), 6005-6016.
- 9) Jin, Z., et al.,: "An Alternative Realization of Droop Control and Virtual Impedance for Paralleled Converters in DC Microgrid" Proceedings of 2018 IEEE Energy Conversion Congress and Exposition (ECCE), (2018), 3765-3770.